
PRESENTED BY TEXAS TECH UNIVERSITY

TAMEST NATURAL HAZARDS SUMMIT

Responding to and Mitigating the Impacts

LUBBOCK, TEXAS 05.16.2022 #NATURALHAZARDSSUMMIT

Improving Resiliency of Infrastructure to Prevent Fatalities and Mitigate Damages

MODERATOR

SPEAKERS

CHANDRA FRANKLIN WOMACK

Owner and Chief Executive Officer, Aran & Franklin; Board Chair, Texas Windstorm Insurance Association

IAN GIAMMANCO, PH.D.

Lead Research Meteorologist & Sr. Director for Standards and Data Analytics, Insurance Institute for Business & Home Safety

MARC LEVITAN, PH.D.

Lead Research Engineer, National Windstorm Impact Reduction Program, National Institute of Standards and Technology

CHRIS LETCHFORD, D.PHIL.

Professor and Chair Rensselaer Polytechnic Institute

TAMEST NATURAL HAZARDS SUMMIT Responding to and Mitigating the Impacts

Advancing Windstorm Resilience through Design for Tornadoes

Marc L. Levitan, Ph.D.

Lead Research Engineer National Windstorm Impact Reduction Program (NWIRP)

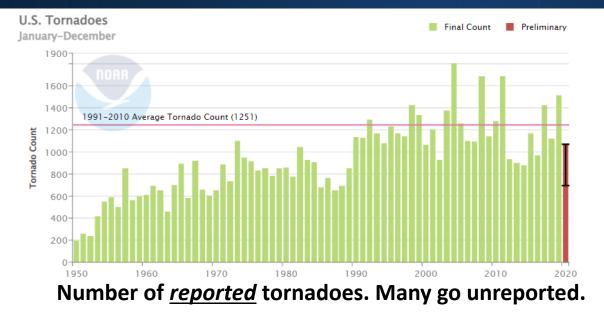
marc.levitan@nist.gov

TTU Class of 1985, 1988, and 1993

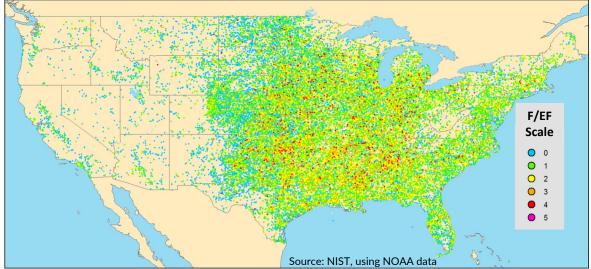
Why Haven't We Considered Tornadoes in Conventional Engineering Design?

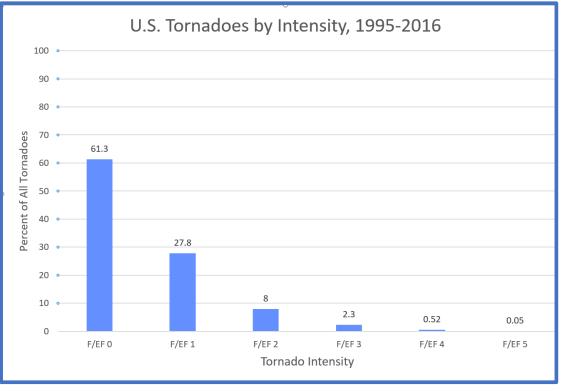
Common Misperceptions

- Too rare
- Losses are small compared to other hazards
- Nothing we can do about them
- Inadequate knowledge
- Buildings would all be concrete bunkers
- Too expensive



Credit: NOAA/ITAE


Perceptions may be shaped by the few violent tornadoes per year that make the headlines


Source: NIST, from NOAA data

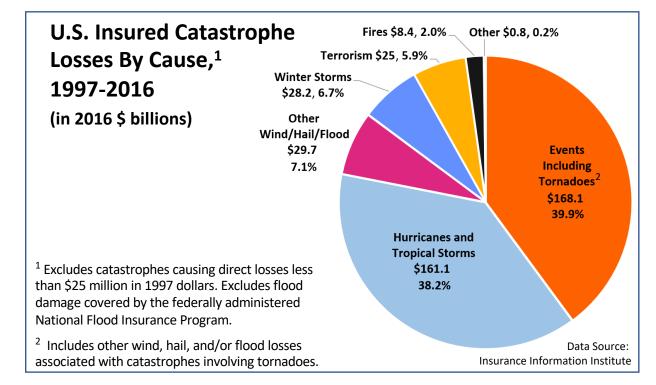
Tornado Frequency

Tornadoes: 1950-2016

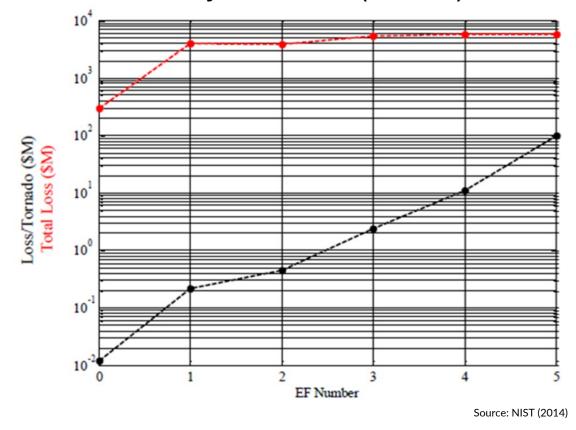
Source: NIST, using NOAA data

- Violent tornadoes are uncommon
- Vast majority of all tornadoes are ≤ EF2
 - EFO-EF1 Tornadoes 89.1%
 - **EFO-EF2** Tornadoes 97.1%

Tornado Impacts

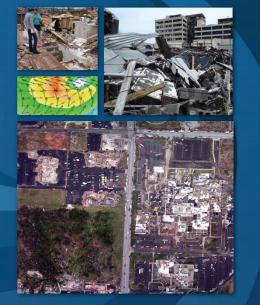


• U.S. Tornado Fatalities ≈ 5,600 (1950-2011)


- Tornado Fatalities > Hurricane + Earthquake Fatalities
- Tornado Fatalities Overwhelmingly Occur Inside Buildings

Tornado Fatalities are a Buildings Problem

Source: NIST (2014)

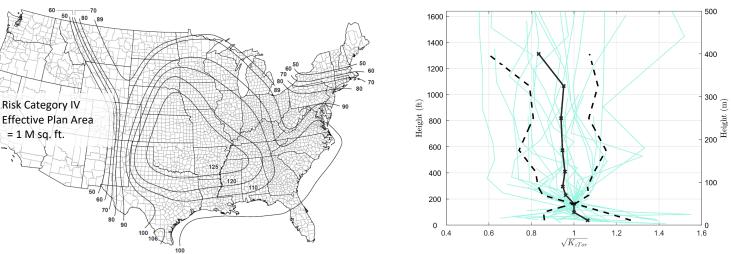

Average Loss/Tornado and Total Loss, by F/EF number (in 2011 \$)

Genesis of New Tornado Load Design Methods NIST

NIST NCSTAR 3

Final Report • National Institute of Standards and Technology (NIST) Technical Investigation of the May 22, 2011, Tornado in Joplin, Missouri

NIST National Institute of Standards and Technology U.S. Department of Commerce


http://dx.doi.org/10.6028/NIST.NCSTAR.3

16 recommendations for improving

- Tornado hazard characterization
- Design and construction of buildings and shelters
- Emergency communications and warnings

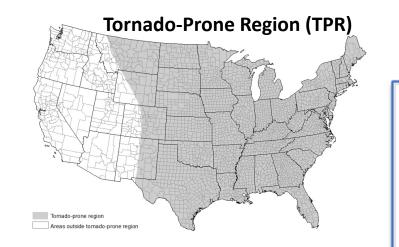
Followed by 6 years R&D to create

- First-ever probabilistic hazard maps, incl. size effects
- Science-based tornado load methodology

Example Design Tornado Speed Map (mph) (Note: 1 mph = 0.447 m/s)

Normalized Tornado Speed Profile

Tornado Loads - New in ASCE 7-22 Standard

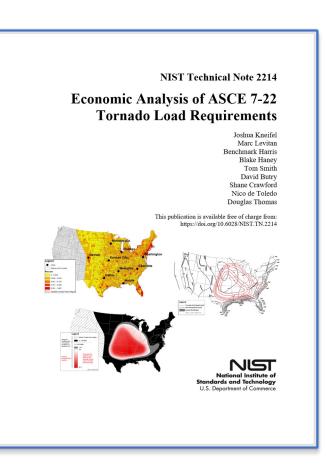


NIST

Credit: NOAA Photo Library, NOAA Central Library; OAR/ERL/National Severe Storms Laboratory (NSSL).

ASCE 7-22 Tornado Load Requirements Summary NIST

- Risk Category III/IV buildings in TPR
 - Assembly occupancies, schools, nursing homes, hospitals, fire, police, etc.
- Tornado design speeds ≈ EFO-EF2
 - Depends on Risk Category, location, plan size
- Designing for most common tornadoes, not most intense
- Loads can increase significantly, sometimes >100%
- Construction costs don't increase much, generally <0.15%



Enhanced Fujita (EF) Tornado Intensity Scale

	EF #	Gust Speed (mph)	% U.S. Tornadoes ¹
	0	65-85	61.3
_	1	86-110	27.8
	2	111-135	8.0
	3	136-165	2.3
	4	166-200	0.52
	5	Over 200	0.05

97.1%

¹ 1995-2016. Source: NIST, using NOAA data.

https://doi.org/10.6028/NIST.TN.2214

Implementation -Improving Tornado Resilience

- Add tornado loads to 2024 IBC
 - Proposal passed the IBC Structural Committee
- Why wait until 2024? (assuming approval)
- Federal/State/Local governments can adopt now
 - Many examples of 'above code' requirements
 - Federal
 - State Alabama and Illinois adoption of requirements for ICC 500 Storm Shelters in Schools
 - Local Joplin MO and Moore OK tornado resistant residential code requirements

GENERAL SERVICES ADMINISTRATION ALTERNATE PATH ANALYSIS & DESIGN GUIDELINES FOR PROGRESSIVE COLLAPSE RESISTANCE

Safe Rooms for Tornadoes and Hurricanes

Guidance for Community and Residential Safe Rooms

FEMA P-361, April 2021 Fourth Edition

