

2021 Edith and Peter O'Donnell Awards

Multifunctional Hydrogels as An Emerging Platform for Energy and Water Sustainability

Guihua Yu, PhD

Materials Science & Engineering, Mechanical Engineering Texas Materials Institute, UT Energy Institute The University of Texas at Austin http://yugroup.me.utexas.edu

Hydrogel — A Unique Class of Functional Materials

"Jelly-like" solids with elastic nature, capable of retaining large amounts of water and maintaining hierarchical structures.

Hydrogel — Tunable Physiochemical Properties

From Synthesis/Self-Assembly to Energy-Water Technologies

Hierarchically Porous Nanostructured Hydrogels

nanostructured conducting polymer hydrogels (nCPHs)

Dopant-Enabled Supramolecular Synthesis

Wang, Shi, Yu, Nano Letters, 2015.

Energy Storage Landscape and Technologies

Electric energy storage:

A key component for future energy economy

Goodenough, Acc. Chem. Res. 2013.

2021 Edith and Peter O'Donnell Awards

Advancing Energy Storage Technologies

Key parameters:

- Energy density (per weight/volume)
- Power density
- Cycle life
- Safety and Cost

Multifunctional Hydrogels for Energy Storage

traditional electrodes in LIBs

Active Organic Conductive material binder carbon

- Electrons are conducted via chains of particles through the composite
- A randomly distributed mixture of conductive phases
- Bottlenecks and poor contacts may impede effective access to parts of the battery

Dudney, **Science** 149 (2015)

Shi, Peng, Yu, *Chem. Soc. Rev.* 2015; Bonaccorso, Colombo, Yu, *Science* 2015.

Tunable 3D nCPHs as Framework Electrodes

A Universal Strategy for High-Capacity Battery Electrodes

Si-Gel system

nCPH-Derived Electrolytes for Solid-State Battery

Solid state electrolyte (SSE)

- Removing flammable liquid electrolytes
- High cycling stability \rightarrow solid-solid interface
- Suppressing dendrite growth by solid electrolyte
- Challenges in Solid State Battery
- Li metal -> dendrite suppression vs delamination
- Poor rate capability \rightarrow high internal resistance at the interfaces
- Electrochemical instability at the electrolyte/electrode interface

J. Phys. Chem. C 2017, 121, 2563

- Agglomeration at high concentration
- Deterioration of ionic conductivity

nCPH-Derived Composite Polymer Electrolytes

Global Clean Water Scarcity

3 Billion

Living in areas of high water stress

Major Industrial Desalination Technologies

Thermal-based

- High energy consumption
- · Large, centralized infrastructures

Membrane-based

- · Require high pressure
- High cost of membrane ٠ (prone to fouling)

Mezher, Desalination 2011, 266, 263; Service, Science 2006, 313, 1088.

Solar-Powered Water Purification

An electricity-independent path to mitigate water scarcity using only sunlight

Hydrogel-based Solar Vapor Generator

An efficient way of harvesting solar energy for purification of polluted or saline water.

Confined evaporation

Solar heat used for evaporation can be localized by PVA gel at the water-air interface \rightarrow reduce the energy loss of bulk water at the bottom

Branched diffusion and arterial pumping

Micron channels and internal gaps of PVA gel can generate capillary force to rapidly replenished molecule meshes from bulk water below.

Polymer gel network reduce latent evaporation enthalpy of water

Zhao, Zhou, Yu, Nature Nanotech. 489 (2018).

Unique Hydrogel-Water System

Hydrogel: 3D crosslinked polymeric networks saturated with water.

J. Chem. Phys. 2014, 044909; Acc. Chem. Res. 2014, 2846.

Schematic of polymer chains affinity to water molecules

J. Mol. Struct, 2008, 282.

Features of Hydrogel-based SVG

record high solar evaporation rate

Stable SVG for continuous operation

2021 Edith and Peter O'Donnell Awards

AND

Solar Water Purification under Natural Sunlight

Solar vapor generation could be achieved under natural sunlight with large scale HNGs.

A seawater purification system has been demonstrated with potential daily yield of ~23 L/m².

Highly Tunable Material Platform for Solar Water Purification

2021 Edith and Peter O'Donnell Awards

Atmospheric Water Harvesting (AWH)

Land desertification and water pollution are worsening the situation

□ Fog and dew can be directly collected as freshwater upon periodic temperature change

□ Large amount of water is hiding in air for climatically and hydrologically independent freshwater production

Atmospheric Water Harvesting

ACS Publications

Zhou, Zhao, Yu, ACS Mater. Lett. 671 (2020).

Super Moisture-Absorbent Gel (SMAG) for AWH

Highly Efficient Atmospheric Water Harvesting

Zhao, Zhou, Yu, Adv. Mater. 1806446 (2019);

2021 Edith and Peter O'Donnell Awards

Self-Watering Soil for Sustainable Agriculture

This new soil can water plants all by itself

Zhou, Yu, ACS Mater. Lett. 1419 (2020).

The innovation could help increase farming potential in dry, deserted areas. Image: REUTERS/Amit Dave

- SMAG-enabled atmospheric water irrigation for plant growth under very dry and hot conditions
- Irrigation-free planting with high germination and survival rate over 95%

Acknowledgement

Yu Research Group @ UT Austin

Over the past years: **25 Undergrad Researchers** 23 Graduate Researchers 13 Postdoc Researchers 9 Visiting Scholars

Current group:

Fei Zhao, Xingyi Zhou, Nancy Guo, Jiwoong Bae, Panpan Li, Megan Alexandre, Wen Shi, Hengyi Lu, Ke Yan, Panpan Zhang, Yu Ding, Zhiwei Fang, Leyuan Zhang, Xiao Zhang, Xuelin Guo, Zhengyu Ju, Desiree Fernandez, Sishuang Tang, Jingyi Wu

Collaborators:

John Goodenough (UT) Arumugam Manthiram (UT) Keith Johnston (UT) Allen Bard (UT) Buddie Mullins (UT) Esther Takeuchi (Stony Brook) Alan West (Columbia) Guangbin Dong (UChicago) Chris Ellison (UMN) Judy Cha (Yale) Chongmin Wang (PNNL) Khalil Amine (ANL) Eric Stach (BNL)

The Camille & Henry Dreyfus Foundation, Inc.

UTAustin

Portugal

The University of Texas at Austin

Energy Institute