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Hydrogel — A Unique Class of Functional Materials

“Jelly-like” solids with elastic nature, capable of retaining large amounts of water and
maintaining hierarchical structures.
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Hydrogel — Tunable Physiochemical Properties

Synthetically tunable systems
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From Synthesis/Self-Assembly to Energy-Water Technologies

Energy Storage/Conversion
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Hierarchically Porous Nanostructured Hydrogels

nanostructured conducting polymer hydrogels (nCPHSs)
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Dopant-Enabled Supramolecular Synthesis
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Ppy doped with CuPcTs
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Tetra-functional groups
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Wang, Shi, Yu, Nano Letters, 2015.
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Table 1. Measured Conductivities of Different PPy Samples
with Different Dopants

pristine

samples PPy—CuPcTs PPy—indigo PPy—isatin PPy

conductivity 7.8 0.4 0.06 0.07
(S/em)

Enhanced conductivity
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Energy Storage Landscape and Technologies
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Advancing Energy Storage Technologies
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Multifunctional Hydrogels for Energy Storage

traditional electrodes in LIBs

Electrons are conducted via chains of
particles through the composite

A randomly distributed mixture of
conductive phases

Bottlenecks and poor contacts may impede

> L
effective access to parts of the battery arge electrode surface

~ High electrical conductivity

Active Organic Conductive "'Highionaccessibmty

material binder carbon > Good ;

\ electrochemica| capability

{a) Traditional / non-conductive binder ~ Good PfoceSsability& scalabil'ty

1
“ﬁt Li* insertion LiT insertion
Li* extraction Shi, Peng, Yu, Chem. Soc. Rev. 2015;
: : . Bonaccorso, Colombo, Yu, Science 2015.
As synthesized Volume expansion Broken electric contacts

Dudney, Science 149 (2015)
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Tunable 3D nCPHs as Framework Electrodes

Key Features:

® CPH constructs a 3D conductive
network in the electrodes;

® Porous structure enables fast
mass/charge transport;

® Uniform polymer coating on the
particles.
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A Universal Strategy for High-Capacity Battery Electrodes
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NnCPH-Derived Electrolytes for Solid-State Battery

+ Solid state electrolyte (SSE)
& During Charging ISE: Inorganic solid electrolyte

Inorganic material, fixed lattice
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- High cycling stability = solid-solid interface Composite of Inorganic filler + Polymer g v &0
- Suppressing dendrite growth by solid electrolyte S
SiO, nanoparticles 10
in PEO matrix J. Phys. Chem. € 2017, 121, 2563
- Agglomeration at high concentration

- Challenges in Solid State Battery NG

- Li metal =» dendrite suppression vs delamination

- Deterioration of ionic conductivity

- Poor rate capability =» high internal resistance at the interfaces

- Electrochemical instability at the electrolyte/electrode interface




NCPH-Derived Composite Polymer Electrolytes

Conductivity with different types fillers
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Global Clean Water Scarcity

3 Billion

Living in areas of high water stress
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Solar-Powered Water Purification

An electricity-independent path to mitigate water scarcity using only sunlight
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Hydrogel-based Solar Vapor Generator

An efficient way of harvesting solar energy for purification of polluted or saline water.

a

Hierarchically nanostructured gel (HNG)

6 Confined evaporation

Solar heat used for evaporation can be localized
by PVA gel at the water-air interface—reduce
the energy loss of bulk water at the bottom

Molecular mesh

Micron channel

— PPy @ Crosslinking point @ Branched diffusion and arterial pumping
Micron channels and internal gaps of PVA gel
can generate capillary force to rapidly
replenished molecule meshes from bulk water
below.
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Polymer gel network reduce latent evaporation
? enthalpy of water

Water transport: o G

1. Confined evaporation :
2. Branched diffusion Q’;ﬁﬂ- A
3. Arterial pumping ' 7?:{‘_\

Zhao, Zhou, Yu, Nature Nanotech. 489 (2018).
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Unique Hydrogel-Water System

Hydrogel: 3D crosslinked polymeric Bl Free water

networks saturated with water.

. Intermediate water

. Bound water

J. Chem. Phys. 2014, 044909;
Acc. Chem. Res. 2014, 2846.
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Features of Hydrogel-based SVG

anti-fouling record high solar evaporation rate
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Solar Water Purification under Natural Sunlight

Science Contents ~ News ~ Careers ~ Journals ~
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1. HNG vapor generator;
II. Brine;
Ill. Transparent condenser;

IV. Purified water; (1). Solar vapor syste;

V. Inlet pipe; (2). Brine tank;
VI. Outlet pipe.

A gel at the heart of this solar still produces a record amount of fresh water. XINGYI ZHOU AND YOUHONG GUO/UT

(3). Purified water flask. AUSTIN

New solar technology could produce clean drinking
water for millions in need
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=
c 0.6 \ ] 3004 2 . o - e 40 a RH vapor into safe drinking water. But large, expensive stills can only produce enough water for a
[=} = iy - Condenser E (%) small family. Now, researchers have developed a new material that speeds the process of
‘& | | \. E 2004 3 evaporation, enabling a small solar still to provide all the drinking water one family needs. If the
T 0.4 / “m L, A . T - T s - - 30 technology proves cheap enough, it could provide millions of impoverished people access to clean
g " . ‘:-! 1004 Brine 9 drinking water.
= a g 40
0.2 r T T - - T " _ - - - - r 20 Today 783 million, or nearly one in 10, people around the world lack such access, according to
10 12 14 16 18 20 0 1 2 3 4 5 6 7 8 9 10 11 12 UNICEF. These people spend a collective 200 million hours a day fetching water from distant
Time Time (h) sources. And even though technologies exist for purifying contaminated water and desalinating

seawater, these typically require expensive infrastructure and lots of energy, putting them beyond

Solar vapor generation could be achieved under natural sunlight with large scale HNGs.

A seawater purification system has been demonstrated with potential daily yield of ~23 L/m?2.
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Highly Tunable Material Platform for Solar Water Purification

N

 Tuning hydrability of polymer

* Integrating nanoscale solar
» Architecting polymer networks

absorber
« Managing heat loss

Energy POIy.mer-Wa.ter Science Advances, aaw5484 (2019).
utilization interaction -

ACS Nano, 7913 (2019).
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Nature Reviews
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» Tuning surface topography
» Tuning surface wettability




Atmospheric Water Harvesting (AWH)

Population growth

ST ™
Ty

O Land desertification and water pollution are worsening
the situation

O Fog and dew can be directly collected as freshwater
upon periodic temperature change

O Large amount of water is hiding in air for climatically
and hydrologically independent freshwater production

Atmospheric Water Harvesting

Zhou, Zhao, Yu, ACS Mater. Lett. 671 (2020). AT




Super Moisture-Absorbent Gel (SMAG) for AWH

Hygroscopic polymer

A novel material platform for AWH
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nghly Efficient Atmospheric Water Harvesting
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Self-Watering Soil for Sustainable Agriculture
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. This new soil can water
plants all by itself
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help increase farming Dave

Plant height (cm)

potential in dry, deserted
areas.
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+ SMAG-enabled atmospheric water irrigation for plant growth under very dry and hot conditions

Zhou, Yu, ACS Mater. Lett. 1419 (2020).
* Irrigation-free planting with high germination and survival rate over 95%
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