Revealing brain circuits underlying sensory processing, plasticity, and neuropsychiatric disease

Benjamin Arenkiel, PhD

Associate Professor of Molecular & Human Genetics, Neuroscience, & DDMT Graduate Program

> Baylor College of Medicine Jan and Dan Duncan Neurological Research Institute & Texas Children's Hospital

The main objective: to reveal mechanisms of how brain circuits are formed and function

Dysfunctional brain circuits underlie neurological disorders

- Neurodevelopmental / cognitive disorders
- Neurodegenerative diseases
- Neuropsychiatric disorders
- Addictive / behavioral disorders

Brain architecture, circuitry, and function is complex

- 1 billion neurons
- 1 trillion connections

<u>The Path Forward</u>

elucidating circuit architecture

exploiting complexity towards treating dysfunction / disease

8

Genetic methods to mark, monitor, & manipulate neurons in mice allows brain circuit investigation

- in vivo imaging
- electrophysiology
- optogenetics
- single cell sequencing
- anatomical tracing
- circuit mapping

The mouse olfactory system is a useful experimental model to study circuit formation & function

!"#\$%'&`(&'')*&+, -+&.('/&O'))12&34''56&'(&'')*&+, -7&8#95(&: '4#'')&0%#\$4%(12&!''#\$%'&'(&'')*&+, -; &<'=&O'))2&!''#\$%'&'(&'')*&+, ->&?#''%5.(#4\$(&845\$(2& 34''568' (&'')*&+, ->&&: '4#91\$%&A4''1(&'(&'')*&+, -B&: ''(&: '4#92&C%A&'(&''(*&?%9&D#9(9\$2&E\$0)''#F'(&'')*&+, -G&&: '4#91\$%& H'I' '(&'')*&+, -G&O'))&J'I9#(12&C%4&'(&'')*&+, -L&: ''(&O9//12&3''5195&'(&'')*&+, +, &8#95(&: '4#'')&O#\$4%(1

The cholinergic basal forebrain provides inputs onto adult-born neurons

ChAT = Choline acetyltransferase = acetylcholine synthesis

Cholinergic signaling is a candidate to influence circuit integration of adult-born neurons

- Cholinergic signaling influences olfaction
- Acetylcholine is synaptogenic
- Cholinergic signaling is linked to reward/arousal/plasticity
- Alzheimer's models treated with acetylcholinesterase blockers show increased adult-born neuron integration

What happens to the adult-born neurons if we genetically manipulate cholinergic basal forebrain inputs?

Genetically targeted ablation of basal forebrain cholinergic neurons results in severe and rapid-onset obesity

Herman et al., 2016

Loss of cholinergic basal forebrain signaling increases drive to eat, unchecked food consumption, and <u>hyperphagia</u>

-Basal Forebrainfeeding / addiction / aversion circuits

The central nervous system controls food intake

What happens if we genetically increase the activity of cholinergic basal forebrain inputs?

-genetically target NaChBac to basal forebrain neurons (NaChBac = "leaky" sodium channel)

(Vlut2-Cre; AAV-flex-NaChBac-YFP)

Chronic activation of basal forebrain neurons causes decreased feeding & dramatic weight loss

Chronic activation of basal forebrain neurons induces voluntary hypophagia without initial metabolic dysfunction

No Changes in serum hormones (prior to malnutrition)

Starvation can be rescued

- Pituitary
 - ACTH, FSH, GH, Prolactin, & TSH
- Thyroid
 - Free T4 & T3
- Glucose Metabolism
 - Glucose & Insulin
- Appetite Hormones
 - Leptin & Ghrelin

Labeling basal forebrain neuron terminals reveals downstream brain targets

Activation of basal forebrain LHb inputs decreases feeding

2021 Edith and Peter O'Donnell Awards

ELL

Optogenetic activation of basal forebrain-to-LHb inputs elicits aversion/avoidance

Optogenetic activation of basal forebrain-to-LHb inputs elicits avoidance in the presence of food

Stress response hormones are not affected with activation of basal forebrain-to-LHb circuit activation

Basal forebrain drive to LHb is "reflexive", and can bypass higher order processing

In vivo imaging reveals food responses in basal forebrain

Basal forebrain neurons are activated by food-related stimuli

Naturally aversive odors more strongly activate basal forebrain neurons than food

Basal forebrain-to-LHb circuits override homeostatic feeding mechanisms

The cholinergic basal forebrain is a potent integration center that modulates behavioral and physiological output

Exploiting circuit complexity may be an approach to treating dysfunction / disease

- 1 billion neurons
- 1 trillion connections

Exploiting circuit complexity may be an approach to treating dysfunction / disease

- 1 billion neurons
- 1 trillion connections altered behavior stimulus

Exploiting circuit complexity may be an approach to treating dysfunction / disease

• 1 billion neurons

In vivo imaging can be used to screen for compounds that gate aversion / reward / feeding circuitry

Acknowledgements

"It's not what you gather but what you scatter that tells what kind of life you have lived."

2021 Edith and Peter O'Donnell Awards

Baylor